Rethinking Recovery:

Using science, technology and collaboration for recovery of the Mojave Desert Tortoise

Cat Darst

Biologist
Desert Tortoise
Recovery Office
USFWS

Philip Murphy

Senior Research
Analyst & Founder
U. of Redlands &
InfoHarvest

In a nutshell...our partnership story

CHALLENGES

- Complex, wicked problem
- Many partners with historic lack of trust
- High degree of conflict

RESPONSES

- Multi-partner collaborative process
- Science and technology to support that process
- Advocacy and outreach

Mojave Desert Tortoise

Listed as Federally Threatened in 1990 Critical Habitat designated in 1994 Recovery Plan published in 1994

What makes a species easily "recoverable"?

- Declines are primarily result of specific, remediable threat
- Preventing recurrence of the threat can happen through existing management or regulatory mechanisms

- Observed population declines result from numerous, diverse threats that vary spatially and temporally
- Not all individuals, or even all populations, are affected by every threat
- Most populations likely are affected by several of these threats simultaneously

- While some threats result in direct mortality of individuals, many affect the *habitat* upon which the species depends
- Multiple threats may interact synergistically
- Many significant threats will return if there is not a sustained management effort

- >\$100M on recovery
- Recovery action effectiveness unknown
- Tragedy of Fragmentation (Goble 2009)

U.S. Institute for Environmental Conflict Resolution

Morris K. Udall Foundation

FEASIBILITY ASSESSMENT REPORT

for Collaborative Desert Tortoise Recovery Planning Process Proposed by U.S. Fish and Wildlife Service

September 26, 2006

Prepared by:

U.S. Institute for Environmental Conflict Resolution and Center for Collaborative Policy California State University, Sacramento

- Long history of controversy and conflict among stakeholders
- Lack of trust amongst agencies
- Complete collaborative overhaul of recovery planning and implementation process necessary to progress
- Build scientific credibility and confirm the availability of resources for implementation

New Approach

To address complexities that have prevented recovery progress to date:

- Coordinated, structured recovery program
- Broad participation

Recovery Implementation Teams &

Spatial Decision Support System

Recovery Implementation Teams

Seven workgroups each composed of 10-14 individuals including:

- Land managers
- Wildlife managers
- Local governments
- Environmental groups
- User groups
- Scientists

Overall Recovery Implementation Team (RIT) Process

RUN MODEL

Spatial Decision Support System (SDSS)

Spatial Decision Support System (SDSS)

Risk to the Tortoise

Model Explorer & Data Explorer

http://www.fws.gov/nevada/desert_tortoise/dtro/dtro_tools.html

Model Explorer & Data Explorer

http://www.fws.gov/nevada/desert_tortoise/dtro/dtro_tools.html

Overall Recovery Implementation Team (RIT) Process

Spatial Decision Support System (SDSS)

Spatial Decision Support System (SDSS)

Overall Recovery Implementation Team (RIT) Process

RIT In-person Meetings

Using a consensus-based framework, RIT workgroups prioritized:

- 1) Action proposals; and
- 2) Effectiveness monitoring & research topics

Recovery Action Plans v1

Recommendations for on—the-ground actions in need of funding to be considered by agencies as budgeting and planning opportunities arise

Overall Recovery Implementation Team (RIT) Process

Broader Context for the SDSS

Better science, technology & collaboration → Better management and decision making

Lessons Learned: What worked well

- Get started: managing even with incomplete information
- Using a structured process and shared information to build trust
- Using maps and visuals to communicate complex, spatial information
- Application: getting managers the numbers they need
- Our approach can be used for other species and ecoregions
- Advocate: your solution may work for other problems

Lessons Learned: Challenges

- Get started: managing even with incomplete information
- Using a structured process and shared information to build trust
- Using maps and visuals to communicate complex, spatial information
- Application: getting managers the numbers they need
- Our approach can be used for other species and ecoregions
- Advocate: your solution may work for other problems

- Good science and process may be ignored
- Lack of core information hampers trust
- Nice maps can't make up for bad data
- Where science is sparse, numbers hard to validate
- Our tortoise implementation is perceived as too complex
- Sustainability: What is next? Who will fund? Who will manage?

Thank you!

